Mononuclear complexes [FeClL(OH)] (L = L, L) were designed and synthesized by combining FeCl with 2-(3'-Aminophenylbenzimidazole) (L) and 2-[(3'-N-Salicylidinephenyl)benzimidazole] (L) and were characterized by physico-analytical strategies. The redox properties of the complexes were disclosed by the cyclic voltammetric method. Further, the interactions of complexes with proteins were studied by performing molecular docking engaging protein models of common cancer therapeutic targets to foresee their affinity to bind to these proteins.
View Article and Find Full Text PDFIn this study, we aim to evaluate the anti-diabetic potential of leaves methanolic extract (MeL) using inhibitory assays for α-glucosidase (AG), α-amylase (AM) (carbohydrate digestive enzymes) and aldose reductase (AR) (an enzyme involved in the polyol pathway responsible for glycation). In addition to antidiabetic studies, antioxidant studies were also performed due to the fact that reactive oxygen species (ROS) are produced by various pathways under diabetic conditions. Hyperglycemia induces ROS by activating the glycation reaction and the electron transport chain in mitochondria.
View Article and Find Full Text PDFThe effect of solvents of varying polarity on the absorption and fluorescence emission of the Schiff base, 2-{[3-(1H-benzimidazole-2-yl) phenyl]carbonoimidoyl}phenol, was studied using Lippert-Mataga bulk polarity function, Reichardt's microscopic solvent polarity parameter and Kamlet's multiple linear regression approach. The spectral properties follow Reichardt's microscopic solvent polarity parameter better than Lippert-Mataga bulk polarity parameter, indicating the presence of both general solute-solvent interactions and specific interactions. Catalan's multiple linear regression approach indicates the major role of solvent polarizability/dipolarity influence compared with solvent acidity or basicity.
View Article and Find Full Text PDF