The hippocampus is crucial for forming new episodic memories. While the encoding of spatial and temporal information (where and when) in the hippocampus is well understood, the encoding of objects (what) remains less clear due to the high dimensions of object space. Rather than encoding each individual object separately, the hippocampus may instead encode categories of objects to reduce this dimensionality.
View Article and Find Full Text PDFObjective: Here, we demonstrate the first successful use of static neural stimulation patterns for specific information content. These static patterns were derived by a model that was applied to a subject's own hippocampal spatiotemporal neural codes for memory.
Approach: We constructed a new model of processes by which the hippocampus encodes specific memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of targeted content into short-term memory.
J Neurosci Methods
February 2024
Background: There are pushes toward non-invasive stimulation of neural tissues to prevent issues that arise from invasive brain recordings and stimulation. Transcranial Focused Ultrasound (TFUS) has been examined as a way to stimulate non-invasively, but previous studies have limitations in the application of TFUS. As a result, refinement is needed to improve stimulation results.
View Article and Find Full Text PDFThe β-delayed proton decay of ^{13}O has previously been studied, but the direct observation of β-delayed 3αp decay has not been reported. Rare 3αp events from the decay of excited states in ^{13}N^{⋆} provide a sensitive probe of cluster configurations in ^{13}N. To measure the low-energy products following β-delayed 3αp decay, the Texas Active Target (TexAT) time projection chamber was employed using the one-at-a-time β-delayed charged-particle spectroscopy technique at the Cyclotron Institute, Texas A&M University.
View Article and Find Full Text PDF