Shaping Metal-Organic Frameworks (MOFs) poses a significant challenge for their widespread application on a large scale. In particular, a precise control over crystal orientation and arrangement on substrates are expected to provide exiting opportunities for novel materials with customized characteristics and enhanced performance in catalysis, gas storage, sensing, optics and electronics. Here we demonstrated for the first time that microwave irradiation can induce well controlled epitaxial growth of urchin-like MIL-53(Al) crystals via the hydrothermal conversion of Atomic Layer Deposition alumina layers on SiC foams.
View Article and Find Full Text PDFWater electrolysis is increasingly considered a viable solution for meeting the world's growing energy demands and mitigating environmental issues. An inventive strategy to mitigate the energy requirements involves substituting the energy-intensive oxygen evolution reaction (OER) with biomass-derived glycerol electrooxidation. Nonetheless, the synthesis of electrocatalysts for controlling the selectivity towards added-value chemicals at the anode and efficient H generation at the cathode remains a critical bottleneck.
View Article and Find Full Text PDFThe design of hydrophobic surfaces requires a material which has a low solid surface tension and a simple fabrication process for anchoring and controlling the surface morphology. A generic method for the spontaneous formation of robust instability patterns is proposed through the hydrosilylation of a fluoroalkene bearing dangling chains, R = CF(CH)-, with a soft polymethylhydrosiloxane (PMHS) spin-coated gel polymer (0.8 μm thick) using Karstedt catalyst.
View Article and Find Full Text PDFAdditive manufacturing of Polymer-Derived Ceramics (PDCs) is regarded as a disruptive fabrication process that includes several technologies such as light curing and ink writing. However, 3D printing based on material extrusion is still not fully explored. Here, an indirect 3D printing approach combining Fused Deposition Modeling (FDM) and replica process is demonstrated as a simple and low-cost approach to deliver complex near-net-shaped cellular Si-based non-oxide ceramic architectures while preserving the structure.
View Article and Find Full Text PDFThe conversion of CO into desirable multicarbon products via the electrochemical reduction reaction holds promise to achieve a circular carbon economy. Here, we report a strategy in which we modify the surface of bimetallic silver-copper catalyst with aromatic heterocycles such as thiadiazole and triazole derivatives to increase the conversion of CO into hydrocarbon molecules. By combining operando Raman and X-ray absorption spectroscopy with electrocatalytic measurements and analysis of the reaction products, we identified that the electron withdrawing nature of functional groups orients the reaction pathway towards the production of C species (ethanol and ethylene) and enhances the reaction rate on the surface of the catalyst by adjusting the electronic state of surface copper atoms.
View Article and Find Full Text PDF