The interest of farmers in growing lettuce landraces is increasing, as landrace varieties prove particularly appealing to consumers striving to purchase natural, local, and high-quality produce. Although high genetic diversity exists in the landrace gene pool, this has scarcely been studied, thus hindering landrace utilization in agriculture. In this study, we analyzed the genetic diversity and the agronomic and quality traits of lettuce landraces in organic agrosystems, by characterizing 16 landraces and 16 modern varieties.
View Article and Find Full Text PDFSynechocystis PCC6803 displays two inorganic carbon-uptake processes, a low-affinity one (apparent Km: 300-400 microM) functional in cells grown under standard or limiting inorganic carbon concentrations, and one with a higher affinity (60 +/- 12 microM), detected only in cells adapted to limiting inorganic carbon conditions. A mutational and screening procedure allowed the isolation of a mutant deficient in the high-affinity system, but only slightly impaired in its growth capacities. The mutated genomic region revealed two open reading frames (ORFs), possibly belonging to an operonic structure.
View Article and Find Full Text PDFA gene, zam (for resistance to acetazolamide), controlling resistance to the carbonic anhydrase inhibitor acetazolamide, is described. It has been cloned from a spontaneous mutant, AZAr-5b, isolated from the cyanobacterium Synechocystis PCC 6803, for its resistance to this drug (Bédu et al., Plant Physiol 93: 1312-1315, 1990).
View Article and Find Full Text PDFAs an approach in the study of the evolution of threonine biosynthetic pathways throughout various organisms, the sequences of three enzymes, namely homoserine dehydrogenase, homoserine kinase and threonine synthase, originating from six organisms, namely Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Brevibacterium lactofermentum, Pseudomonas aeruginosa and Saccharomyces cerevisiae, were compared. As a general trend all three enzymatic activities were carried out by proteins sharing sequence relatedness (except for the homoserine kinase of P aeruginosa). Unexpectedly however, for each step one or two enzymes stood out of the main stream: i) for homoserine dehydrogenase, the yeast protein is atypically similar to the E coli enzyme; ii) for homoserine kinase, the P aeruginosa protein shares no similarity with any other species; and iii) for threonine synthase, the B subtilis protein is far distant from the enzymes of other species.
View Article and Find Full Text PDF