Publications by authors named "B Radha Krishnan"

Mice can generate a cognitive map of an environment based on self-motion signals when there is a fixed association between their starting point and the location of their goal.

View Article and Find Full Text PDF

Several reports have indicated that impaired mitochondrial function contributes to the development and progression of Huntington's disease (HD). Mitochondrial genome damage, particularly DNA strand breaks (SBs), is a potential cause for its compromised functionality. We have recently demonstrated that the activity of polynucleotide kinase 3'-phosphatase (PNKP), a critical DNA end-processing enzyme, is significantly reduced in the nuclear extract of HD patients due to lower level of a metabolite fructose-2,6 bisphosphate (F2,6BP), a biosynthetic product of 6-phosphofructo-2-kinase fructose-2,6-bisphosphatase 3 (PFKFB3), leading to persistent DNA SBs with 3'-phosphate termini, refractory to subsequent steps for repair completion.

View Article and Find Full Text PDF
Article Synopsis
  • The matrix metalloproteinases (MMPs) are zinc proteases that help break down components of the extracellular matrix (ECM) and are involved in processes like inflammation and cell growth.
  • A study of Drosophila MMPs Mmp1 and Mmp2 shows that while they are important for tissue remodeling, they are not necessary for embryonic development, and their localization (either membrane-anchored or released) is key in distinguishing their roles.
  • MMPs are categorized into secretory and membrane types based on their structure and function, and while humans have many MMPs, Drosophila only has two, highlighting the potential complexity of MMP regulation in disease progression.
View Article and Find Full Text PDF

Huntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3) are the two most prevalent polyglutamine (polyQ) neurodegenerative diseases, caused by CAG (encoding glutamine) repeat expansion in the coding region of the huntingtin (HTT) and ataxin-3 (ATXN3) proteins, respectively. We have earlier reported that the activity, but not the protein level, of an essential DNA repair enzyme, polynucleotide kinase 3'-phosphatase (PNKP), is severely abrogated in both HD and SCA3 resulting in accumulation of double-strand breaks in patients' brain genome. While investigating the mechanistic basis for the loss of PNKP activity and accumulation of DNA double-strand breaks leading to neuronal death, we observed that PNKP interacts with the nuclear isoform of 6-phosphofructo-2-kinase fructose-2,6-bisphosphatase 3 (PFKFB3).

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common age-associated neurodegenerative disorder, characterized by progressive cognitive decline, memory impairment, and structural brain changes, primarily involving Aβ plaques and neurofibrillary tangles of hyperphosphorylated tau protein. Recent research highlights the significance of smaller Aβ and Tau oligomeric aggregates (AβO and TauO, respectively) in synaptic dysfunction and disease progression. Calcineurin (CaN), a key calcium/calmodulin-dependent player in regulating synaptic function in the central nervous system (CNS) is implicated in mediating detrimental effects of AβO on synapses and memory function in AD.

View Article and Find Full Text PDF