Publications by authors named "B R Schofield"

Metabotropic glutamate receptors (mGluRs) are widely expressed throughout the central nervous system. They are linked to G-protein coupled receptors and are known to modulate synaptic transmission. The data regarding their expression in auditory structures are not systematic and mainly originate from physiological studies where expression was used to support physiological findings.

View Article and Find Full Text PDF

Hydroxyeicosatetraenoic acids (HETE) are dramatically increased under brain ischemia and significantly affect post-ischemic recovery. However, the exact mechanism of HETE increase and their origin under ischemia are poorly understood. HETE might be produced de novo through lipoxygenase (LOX) -dependent synthesis with possible esterification into a lipid storage pool, or non-enzymatically through free radical oxidation of esterified arachidonic acid (20:4n6).

View Article and Find Full Text PDF

Growing evidence suggests that neuropeptide signaling shapes auditory computations. We previously showed that neuropeptide Y (NPY) is expressed in the inferior colliculus (IC) by a population of GABAergic stellate neurons and that NPY regulates the strength of local excitatory circuits in the IC. NPY neurons were initially characterized using the NPY-hrGFP mouse, in which humanized renilla green fluorescent protein (hrGFP) expression indicates NPY expression at the time of assay, i.

View Article and Find Full Text PDF

The inferior colliculus (IC), a midbrain hub for integration of auditory information, receives dense cholinergic input that could modulate nearly all aspects of hearing. A key step in understanding cholinergic modulation is to identify the source(s) and termination patterns of cholinergic input. These issues have not been addressed for the IC in mice, an increasingly important model for study of hearing.

View Article and Find Full Text PDF

Dramatic postmortem prostanoid (PG) enzymatic synthesis in the brain causes a significant artifact during PG analysis. Thus, enzyme deactivation is required for an accurate in situ endogenous PG quantification. To date, the only method for preventing postmortem brain PG increase with tissue structure preservation is fixation by head-focused microwave irradiation (MW), which is considered the gold standard method, allowing for rapid in situ heat-denaturation of enzymes.

View Article and Find Full Text PDF