A hierarchical transparent back contact leveraging an AlGaO passivating layer, TiCT MXene with a high work function, and a transparent cracked film lithography (CFL) templated nanogrid is demonstrated on copper-free cadmium telluride (CdTe) devices. AlGaO improves device open-circuit voltage but reduces the fill factor when using a CFL-templated metal contact. Including a TiCT interlayer improves the fill factor, lowers detrimental Schottky barriers, and enables metallization with CFL by providing transverse conduction into the nanogrid.
View Article and Find Full Text PDFImproved solar energy harvesting in aquatic environments would allow for superior environmental monitoring. However, developing underwater solar cells is challenging as evaluation typically requires deployment in the field or in large water tanks that can simulate aquatic light conditions. Here, we present a protocol to test underwater solar cells using a light-emitting diode (LED)-based characterization technique usable in a typical laboratory setting.
View Article and Find Full Text PDFImproving solar energy collection in aquatic environments would allow for superior environmental monitoring and remote sensing, but the identification of optimal photovoltaic technologies for such applications is challenging as evaluation requires either field deployment or access to large water tanks. Here, we present a simple bench-top characterization technique that does not require direct access to water and therefore circumvents the need for field testing during initial trials of development. Employing LEDs to simulate underwater solar spectra at various depths, we compare Si and CdTe solar cells, two commercially available technologies, with GaInP cells, a technology with a wide bandgap close to ideal for underwater solar harvesting.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2016
Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization.
View Article and Find Full Text PDF