Publications by authors named "B R Pauw"

Organic phosphates (OP) are important nutrient components for living cells in natural environments, where they readily interact with ubiquitous iron phases such as hydrous ferric oxide, ferrihydrite (FHY). FHY partakes in many key bio(geo)chemical reactions including iron-mediated carbon storage in soils, or iron-storage in living organisms. However, it is still unknown how OP affects the formation, structure and properties of FHY.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how heavy water (DO) affects the formation and stability of CdS nanoparticles in comparison to normal water (HO), specifically through the lens of interactions with the ligand EDTA.
  • It uses advanced techniques like small angle X-ray scattering (SAXS) and scanning transmission electron microscopy to analyze changes in nanoparticle size and structure.
  • Findings show that the isotopic difference leads to significant changes in nanoparticle stability, suggesting that results from experiments in DO may not be applicable to those in normal water due to these isotopic effects.
View Article and Find Full Text PDF

The complex nature of liquid water saturation of polymer electrolyte fuel cell (PEFC) catalyst layers (CLs) greatly affects the device performance. To investigate this problem, we present a method to quantify the presence of liquid water in a PEFC CL using small-angle X-ray scattering (SAXS). This method leverages the differences in electron densities between the solid catalyst matrix and the liquid water filled pores of the CL under both dry and wet conditions.

View Article and Find Full Text PDF

Filigree structures can be manufactured via two-photon polymerization (2PP) operating in the regime of nonlinear light absorption. For the first time, it is possible to apply this technique to the powder processing of ceramic structures with a feature size in the range of the critical defect sizes responsible for brittle fracture and, thus, affecting fracture toughness of high-performance ceramics. In this way, tailoring of advanced properties can be achieved already in the shaping process.

View Article and Find Full Text PDF

Mechanically stable structures with interconnected hierarchical porosity combine the benefits of both small and large pores, such as high surface area, pore volume, and good mass transport capabilities. Hence, lightweight micro-/meso-/macroporous monoliths are prepared from ordered mesoporous silica COK-12 by means of spark plasma sintering (SPS, S-sintering) and compared to conventionally (C-) sintered monoliths. A multi-scale model is developed to fit the small angle X-ray scattering data and obtain information on the hexagonal lattice parameters, pore sizes from the macro to the micro range, as well as the dimensions of the silica population.

View Article and Find Full Text PDF