Publications by authors named "B R Jaramillo-Avila"

We present a Hamiltonian model describing two pairs of mechanical and optical modes under standard optomechanical interaction. The vibrational modes are mechanically isolated from each other and the optical modes couple evanescently. We recover the ranges for variables of interest, such as mechanical and optical resonant frequencies and naked coupling strengths, using a finite element model for a standard experimental realization.

View Article and Find Full Text PDF

We demonstrate scattering control of Gaussian-like wave packets propagating with constant envelope velocity and invariant waist through coupled resonator optical waveguides (CROW) via an external resonator coupled to multiple sites of the CROW. We calculate the analytical reflectance and transmittance using standard scattering methods from waveguide quantum electrodynamics and show it is possible to approximate them for an external resonator detuned to the CROW. Our analytical and approximate results are in good agreement with numerical simulations.

View Article and Find Full Text PDF

We analyze a lossy linearized optomechanical system in the red-detuned regime under the rotating wave approximation. This so-called optomechanical state transfer protocol provides effective lossy frequency converter (quantum beam-splitter-like) dynamics where the strength of the coupling between the electromagnetic and mechanical modes is controlled by the optical steady-state amplitude. By restricting to a subspace with no losses, we argue that the transition from mode-hybridization in the strong coupling regime to the damped-dynamics in the weak coupling regime, is a signature of the passive parity-time ([Formula: see text]) symmetry breaking transition in the underlying non-Hermitian quantum dimer.

View Article and Find Full Text PDF

We study propagation in a cyclic symmetric multicore fiber where the core radii randomly fluctuate along the propagation direction. We propose a hybrid analytic-numerical method to optimize the amplitude and frequency of the fluctuations that suppress power transfer between outer and inner cores. This framework allows us to analytically find noise amplitude parameters that optimally suppress crosstalk.

View Article and Find Full Text PDF

We propose a technique for robust optomechanical state transfer using phase-tailored composite pulse driving with constant amplitude. Our proposal is inspired by coherent control techniques in lossless driven qubits. We demonstrate that there exist optimal phases for maximally robust excitation exchange in lossy strongly-driven optomechanical state transfer.

View Article and Find Full Text PDF