E3 ubiquitin ligases have been linked to developmental diseases including autism, Angelman syndrome (UBE3A), and Johanson-Blizzard syndrome (JBS) (UBR1). Here, we report variants in the E3 ligase UBR5 in 29 individuals presenting with a neurodevelopmental syndrome that includes developmental delay, autism, intellectual disability, epilepsy, movement disorders, and/or genital anomalies. Their phenotype is distinct from JBS due to the absence of exocrine pancreatic insufficiency and the presence of autism, epilepsy, and, in some probands, a movement disorder.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a pediatric genetic disorder characterized by the loss of spinal cord motor neurons (MNs). Although the mechanisms underlying MN loss are not clear, current data suggest that glial cells contribute to disease pathology. We have previously found that SMA astrocytes drive microglial activation and MN loss potentially through the upregulation of NF-κB-mediated pro-inflammatory cytokines.
View Article and Find Full Text PDFWhile some model-informed drug development frameworks are well recognized as enabling clinical trials, the value of disease progression modeling (DPM) in impacting medical product development has yet to be fully realized. The Clinical Trials Transformation Initiative assembled a diverse project team from across the patient, academic, regulatory, and industry sectors of practice to advance the use of DPM for decision making in clinical trials and medical product development. This team conducted a scoping review to explore current applications of DPM and convened a multi-stakeholder expert meeting to discuss its value in medical product development.
View Article and Find Full Text PDFSingle-cell RNA sequencing (scRNA-seq) allows for an unbiased assessment of cellular phenotypes by enabling the extraction of transcriptomic data. An important question in downstream analysis is how to evaluate biological similarities and differences between samples in high dimensional space. This becomes especially complex when there is cellular heterogeneity within the samples.
View Article and Find Full Text PDFMucopolysaccharidoses are inherited metabolic disorders caused by the deficiency in lysosomal enzymes required to break down glycosaminoglycans. Accumulation of glycosaminoglycans leads to progressive, systemic degenerative disease. The central nervous system is particularly affected, resulting in developmental delays, neurological regression, and early mortality.
View Article and Find Full Text PDF