Publications by authors named "B R Botterman"

Background: Long-gap peripheral nerve defects arising from tumor, trauma, or birth-related injuries requiring nerve reconstruction are currently treated using nerve autografts and nerve allografts. Autografts are associated with limited supply and donor-site morbidity. Allografts require administration of transient immunosuppressants, which has substantial associated risks.

View Article and Find Full Text PDF

Peripheral nerve damage is routinely repaired by autogenic nerve grafting, often leading to less than optimal functional recovery at the expense of healthy donor nerves. Alternative repair strategies use tubular scaffolds to guide the regeneration of damaged nerves, but despite the progress made on improved structural materials for the nerve tubes, functional recovery remains incomplete. We developed a biosynthetic nerve implant (BNI) consisting of a hydrogel-based transparent multichannel scaffold with luminar collagen matrix as a 3-D substrate for nerve repair.

View Article and Find Full Text PDF

Direct interfacing of transected peripheral nerves with advanced robotic prosthetic devices has been proposed as a strategy for achieving natural motor control and sensory perception of such bionic substitutes, thus fully functionally replacing missing limbs in amputees. Multi-electrode arrays placed in the brain and peripheral nerves have been used successfully to convey neural control of prosthetic devices to the user. However, reactive gliosis, micro hemorrhages, axonopathy and excessive inflammation currently limit their long-term use.

View Article and Find Full Text PDF

Implanting electrical devices in the nervous system to treat neural diseases is becoming very common. The success of these brain-machine interfaces depends on the electrodes that come into contact with the neural tissue. Here we show that conventional tungsten and stainless steel wire electrodes can be coated with carbon nanotubes using electrochemical techniques under ambient conditions.

View Article and Find Full Text PDF

Adult adipose contains stromal progenitor cells with neurogenic potential. However, the stability of neuronal phenotypes adopted by Adipose-Derived Adult Stromal (ADAS) cells and whether terminal neuronal differentiation is required for their consideration as alternatives in cell replacement strategies to treat neurological disorders is largely unknown. We investigated whether in vitro neural induction of ADAS cells determined their ability to neuroprotect or restore function in a lesioned dopaminergic pathway.

View Article and Find Full Text PDF