Melatonin (MT) (N-acetyl-5-methoxytryptamine) is an indoleamine recognized primarily for its crucial role in regulating sleep through circadian rhythm modulation in humans and animals. Beyond its association with the pineal gland, it is synthesized in various tissues, functioning as a hormone, tissue factor, autocoid, paracoid, and antioxidant, impacting multiple organ systems, including the gut-brain axis. However, the mechanisms of extra-pineal MT production and its role in microbiota-host interactions remain less understood.
View Article and Find Full Text PDFGut microbial features and the role of early life stress in pediatric functional abdominal pain-not otherwise specified (FAP-NOS) have never been investigated before. Here, we hypothesize that early life stress is more prevalent in FAP-NOS compared to healthy controls and that fecal microbial profiles and related metabolites differ between groups. In an international multicenter case-control study, FAP-NOS patients ( = 40) were compared to healthy controls ( = 55).
View Article and Find Full Text PDFBackground: Folate (vitamin B9) occurs naturally mainly as tetrahydrofolate (THF), methyl-tetrahydrofolate (M-THF), and formyl-tetrahydrofolate (F-THF), and as dietary synthetic form (folic acid). While folate auxotrophy and prototrophy are known for several gut microbes, the specific folate forms produced by gut prototrophs and their impact on gut auxotrophs and microbiota remain unexplored.
Methods: Here, we quantified by UHPLC-FL/UV folate produced by six predicted gut prototrophs (Marvinbryantia formatexigens DSM 14469, Blautia hydrogenotrophica 10507 , Blautia producta DSM 14466, Bacteroides caccae DSM 19024, Bacteroides ovatus DSM 1896, and Bacteroides thetaiotaomicron DSM 2079 ) and investigated the impact of different folate forms and doses (50 and 200 µg/l) on the growth and metabolism of the gut auxotroph Roseburia intestinalis in pure cultures and during fecal anaerobic batch fermentations (48 h, 37 °C) of five healthy adults.
Stress in early life can affect the progeny and increase the risk to develop psychiatric and cardiometabolic diseases across generations. The cross-generational effects of early life stress have been modeled in mice and demonstrated to be associated with epigenetic factors in the germline. While stress is known to affect gut microbial features, whether its effects can persist across life and be passed to the progeny is not well defined.
View Article and Find Full Text PDF