In cell biology, recently developed technologies for studying suspended cell clusters, such as organoids or cancer spheroids, hold great promise relative to traditional 2D cell cultures. There is, however, growing awareness that sample confinement, such as fixation on a surface or embedding in a gel, has substantial impact on cell clusters. This creates a need for contact-less tools for 3D manipulation and inspection.
View Article and Find Full Text PDFBragg reflection waveguides emitting broadband parametric downconversion (PDC) have been proven to be well suited for the on-chip generation of polarization entanglement in a straightforward fashion [Sci. Rep.3, 2314 (2013)SRWSDA2045-232210.
View Article and Find Full Text PDFWe investigate the dispersion properties of ridge Bragg-reflection waveguides to deduce their phasematching characteristics. These are crucial for exploiting them as sources of parametric down-conversion (PDC). In order to estimate the phasematching bandwidth we first determine the group refractive indices of the interacting modes via Fabry-Perot experiments in two distant wavelength regions.
View Article and Find Full Text PDFOpt Express
December 2015
Based on the interaction between different spatial modes, semiconductor Bragg-reflection waveguides (BRWs) provide a highly functional platform for non-linear optics. For achieving any desired quantum optical functionality, we must control and engineer the properties of each spatial mode. To reach this purpose we extend the Fabry-Perot technique and achieve a detailed linear optical characterization of dispersive multimode semiconductor waveguides.
View Article and Find Full Text PDFWhile in most cases the absolute accuracy, resolution, and noise floor are the only relevant specifications for the dynamic range of a photodetector, there are experiments for which the linearity plays a more important role than the former three properties. In these experiments nonlinearity can lead to systematic errors. In our work we present a modern implementation of the well-known superposition method and apply it to two different types of photodetectors.
View Article and Find Full Text PDF