Photodynamic therapy (PDT) is a treatment modality clinically approved for several oncologic indications, including esophageal and endobronchial cancers, precancerous conditions including Barrett's esophagus and actinic keratosis, and benign conditions like age-related macular degeneration. While it is currently clinically underused, PDT is an area of significant research interest. Because PDT relies on the absorption of light energy by intrinsic or administered absorbers, the dosimetric quantity of interest is the absorbed energy per unit mass of tissue, proportional to the fluence rate of light in tissue.
View Article and Find Full Text PDFThe editorial introduces the JBO Special Issue on Pulse Oximetry.
View Article and Find Full Text PDFABY-029, an anti-epidermal growth factor receptor (EGFR) Affibody® molecule conjugated to IRDye 800CW, recently underwent first-in-human testing in soft-tissue sarcoma (STS). FDA Exploratory Investigational New Drug status was obtained for the Phase 0 clinical trial in which study objectives were to determine whether biological variance ratio (BVR) of 10 was achievable, fluorescence intensity correlated with EGFR expression, and doses were well tolerated. Patients (N=12) with STS were recruited based on positive EGFR immunohistochemical staining of diagnostic biopsies.
View Article and Find Full Text PDFSignificance: Fluorescence sensing within tissue is an effective tool for tissue characterization; however, the modality and geometry of the image acquisition can alter the observed signal.
Aim: We introduce a novel optical fiber-based system capable of measuring two fluorescent contrast agents through 2 cm of tissue with simple passive electronic switching between the excitation light, simultaneously acquiring fluorescence and excitation data. The goal was to quantify indocyanine green (ICG) and protoporphyrin IX (PpIX) within tissue, and the sampling method was compared with wide-field surface imaging to contrast the value of deep sensing versus surface imaging.
Biomed Phys Eng Express
November 2024
. To develop a robust method for non-contact surface dosimetry during Total Body Irradiation (TBI) that uses an optimally paired choice of scintillator material with camera photocathode and can work insensitively to the normal ambient room lighting conditions (∼500 Lux)..
View Article and Find Full Text PDF