The viscoelastic properties of biological membranes are crucial in controlling cellular functions and are determined primarily by the lipids' composition and structure. This work studies these properties by varying the structure of the constituting lipids in order to influence their interaction with high-density lipoprotein (HDL) particles. Various fluorescence-based techniques were applied to study lipid domains, membrane order, and the overall lateral as well as the molecule-internal glycerol region mobility in HDL-membrane interactions (i.
View Article and Find Full Text PDFEnvironment-sensitive probes are frequently used in spectral and multi-channel microscopy to study alterations in cell homeostasis. However, the few open-source packages available for processing of spectral images are limited in scope. Here, we present VISION, a stand-alone software based on Python for spectral analysis with improved applicability.
View Article and Find Full Text PDFT cell receptor (TCR) clustering and formation of an immune synapse are crucial for TCR signaling. However, limited information is available about these dynamic assemblies and their connection to transmembrane signaling. In this work, TCR clustering is controlled via plug-and-play nanotools based on an engineered irreversible conjugation pair and a peptide-loaded major histocompatibility complex (pMHC) molecule to compare receptor assembly in a ligand (pMHC)-induced or ligand-independent manner.
View Article and Find Full Text PDFWe introduce a method, single-particle profiler, that provides single-particle information on the content and biophysical properties of thousands of particles in the size range 5-200 nm. We use our single-particle profiler to measure the messenger RNA encapsulation efficiency of lipid nanoparticles, the viral binding efficiencies of different nanobodies, and the biophysical heterogeneity of liposomes, lipoproteins, exosomes and viruses.
View Article and Find Full Text PDFLipoprotein particles (LPs) are excellent transporters and have been intensively studied in cardiovascular diseases, especially regarding parameters such as their class distribution and accumulation, site-specific delivery, cellular internalization, and escape from endo/lysosomal compartments. The aim of the present work is the hydrophilic cargo loading of LPs. As an exemplary proof-of-principle showcase, the glucose metabolism-regulating hormone, insulin, was successfully incorporated into high-density lipoprotein (HDL) particles.
View Article and Find Full Text PDF