In order to facilitate a novel means for coupling proteins to metal oxides, peptides were identified from a dodecamer peptide yeast surface display library that bound a model metal oxide material, the C, A, and R crystalline faces of synthetic sapphire (alpha-Al(2)O(3)). Seven rounds of screening yielded peptides enriched in basic amino acids compared to the naive library. While the C-face had a high background of endogenous yeast cell binding, the A- and R faces displayed clear peptide-mediated cell adhesion.
View Article and Find Full Text PDFAlthough promising for biomimetic materials applications, polypeptides binding inorganic material surfaces and the mechanism of their function have been difficult to characterize. This paper reports sequence-activity relationships of peptides interfacing with semiconductor CdS, and presents methodologies broadly applicable to studying peptide-solid surface interactions. We first employed yeast surface display with a human repertoire antibody library and identified rarely-occurring scFv fragments as CdS-binding polypeptides.
View Article and Find Full Text PDFDevelopment of a fundamental understanding of how peptides specifically interact with inorganic material surfaces is crucial to furthering many applications in the field of nanobiotechnology. Herein, we report systematic study of peptide sequence-activity relationships for binding to II-VI semiconductors (CdS, CdSe, ZnS, ZnSe) and Au using a yeast surface display system, and we define criteria for tuning peptide affinity and specificity for these material surfaces. First, homohexapeptides of the 20 naturally occurring amino acids were engineered, expressed on yeast surface, and assayed for the ability to bind each material surface in order to define functional groups sufficient for binding.
View Article and Find Full Text PDFIn this communication, solid-phase reactions for the synthesis of Lys-monofunctionalized gold nanoparticles are described. A controlled and selective fabrication of linear nanoparticle arrays can be achieved through peptide linkage systems, and therefore it is essential to prepare Fmoc amino acid nanoparticle building blocks susceptible to Fmoc solid-phase peptide synthesis. Gold nanoparticles containing carboxylic acids (2) in the organic shell were covalently ligated to Lys on solid supports through amide bond coupling reactions.
View Article and Find Full Text PDFJ Biochem Biophys Methods
February 2004
As contemporary "genomics" steadily reveals an increasing number of novel gene sequences, the need for efficient methodologies to functionally characterize these genes in vivo increases significantly. Reliable coupling of target gene expression to a variety of surrogate reporter functions is critical to properly assay novel gene function in complex cell populations. Ideally, independent target and reporter proteins would be derived from a single open reading frame creating a stoichiometric relationship without obscuring subcellular localization.
View Article and Find Full Text PDF