It is well established that solutions of both polymeric and oligomeric κ-carrageenan exhibit a clear change in optical rotation (OR), in concert with gel-formation for polymeric samples, as the solution is cooled in the presence of certain ions. The canonical interpretation - that this OR change reflects a 'coil-to-helix transition' in single chains - has seemed unambiguous; the solution- or 'disordered'-state structure has ubiquitously been assumed to be a 'random coil', and the helical nature of carrageenan in the solid-state was settled in the 1970s. However, recent work has found that κ-carrageenan contains substantial helical secondary structure elements in the disordered-state, raising doubts over the validity of this interpretation.
View Article and Find Full Text PDFRecent molecular dynamics simulations, verified experimentally by solution-state x-ray scattering experiments, have found that κ-carrageenan chains contain helical secondary structure, akin to that found in the solid-state, even in aqueous solution. Furthermore, upon the addition of ions to single chains the simulations found no evidence that any conformational transitions take place. These findings challenge the long-held assumption that the so-called disorder-to-order transition in carrageenan systems involves a uni-molecular 'coil-to-helix transition'.
View Article and Find Full Text PDFThe solution state structure of κ-carrageenan is typically described as a 'random coil', to indicate a lack of defined secondary structure elements. From this starting point the assignment of an optical-rotation-detected change that follows the introduction of particular ions to such solutions as a 'coil-to-helix transition' seems unambiguous, and thus the canonical description of this important biopolymer's gelling behaviour was born. However, the notion that κ-carrageenan exists in solution as a random coil, devoid of secondary structure, has been questioned a number of times previously in the literature, particularly by the molecular modelling and NMR communities.
View Article and Find Full Text PDF