Angiotensin-converting enzyme 2 (ACE2) and neuropilin 1, a vascular endothelial growth factor (VEGF) receptor, were identified to bind to the SARS-CoV-2 spike receptor-binding domain (spike RBD). analysis based on 3D structure, multiple sequence alignment, and molecular docking of second domain of soluble Flt-1 (sFlt-1) and spike RBD revealed structural similarities, sequence homology, and protein-protein interaction. Interaction and binding of recombinant spike RBD (rspike RBD) and recombinant sFlt-1 (rsFlt-1) induced a conformational change, as revealed by spectrofluorimetric data, with increased fluorescence intensity in emission spectra as compared to either of the proteins alone.
View Article and Find Full Text PDFA biosurfactant producing bacterium was identified as DNM50 based on molecular characterization (NCBI accession no. MK351591). Structural characterization using MALDI-TOF revealed the presence of 12 different congeners of rhamnolipid such as Rha-C8-C8:1, Rha-C10-C8:1, Rha-C10-C10, Rha-C10-C12:1, Rha-C16:1, Rha-C16, Rha-C17:1, Rha-Rha-C10:1-C10:1, Rha-Rha-C10-C12, Rha-Rha-C10-C8, Rha-Rha-C10-C8:1, and Rha-Rha-C8-C8.
View Article and Find Full Text PDFBackground: Triple Negative Breast Cancer (TNBC) tends to be more aggressive than other types of breast cancer. Resistance to chemotherapy is a major obstacle hence there is a significant need for new antineoplastic drugs with multi-target potency. Numerous Benzoisoxazole moieties have been found to possess a broad spectrum of pharmacological activities.
View Article and Find Full Text PDFApproximately 15% of globally diagnosed breast cancers are designated as triple negative breast cancer (TNBC). In this study, we investigated the effect of the natural compound, Bis(2- ethyl hexyl) 1H-pyrrole-3,4-dicarboxylate (TCCP), purified from Tinospora cordifolia on MDA-MB-231, a TNBC cell line. The pro-apoptotic nature of TCCP on MDA-MB-231 was determined by assessing various apoptotic markers.
View Article and Find Full Text PDFHeat shock proteins (HSPs), molecular chaperones, are crucial for the cancer cells to facilitate proper functioning of various oncoproteins involved in cell survival, proliferation, migration, and tumor angiogenesis. Tumor cells are said to be "addicted" to HSPs. HSPs are overexpressed in many cancers due to upregulation of transcription factor Heat-shock factor 1 (HSF-1), the multifaceted master regulator of heat shock response.
View Article and Find Full Text PDF