Background: Alzheimer's disease (AD) is marked by cognitive decline, amyloid plaques, neurofibrillary tangles, and cholinergic loss. Due to the limited success of amyloid-targeted therapies, attention has shifted to new non-amyloid targets like phosphodiesterases (PDE). This study investigates the potential of Flemingia vestita (FV) phytomolecules and derivatives, particularly 8-Prenyldaidzein, in AD treatment.
View Article and Find Full Text PDFNaga chilli (Capsicum chinense Jacq.) have garnered significant attention due to the plant's possible health benefits and variety of phytochemical components. Utilizing cutting-edge analytical techniques such as gas chromatography-mass spectrometry (GC-MS) and high-performance thin layer chromatography (HPTLC) in conjunction with bioautography, this study conducts a thorough phytochemical profiling and biological activity assessment of the Naga chilli plant.
View Article and Find Full Text PDFIn this study, a sustainable and eco-friendly method is developed to quantify azelnidipine and chlorthalidone in rabbit plasma by gradient liquid chromatography based on green chemistry principle and analytical quality by design. The separation was achieved on a Shim pack C18 (25 cm × 5 cm × 4.6 μm) column with L1 packing.
View Article and Find Full Text PDFBackground And Objective: According to World Health Organization, melanoma claims the lives of about 48000 people worldwide each year. The purpose of this study was to identify potential phytochemical pool from Diplazium esculentum against proteins that contribute to melanoma development.
Methods: The research was carried to locate potentially bioactive molecules and conduct a theoretical analysis of active ingredients from DE to impact melanoma.
Carbonyl-carbonyl (CO⋯CO) n → π* interaction often coexists with a hydrogen bond (HB) or another n → π* interaction. Although the interplay between HB and n → π* interaction was previously studied, there is no systematic investigation that shows a synergistic relationship of n → π* with another noncovalent interaction. Herein, we have studied a set of proline-diacylhydrazine (Pro-DAH) molecules and observed that increase in the strength of the n → π* interaction on their DAH side strengthened the n → π* interaction on the Pro side, which was experimentally determined by measuring the of the Xaa-Pro amide bond.
View Article and Find Full Text PDF