Mitigating climate change requires transformational advances for carbon dioxide removal, including geologic carbon sequestration in reactive subsurface environments. The Wallula Basalt Carbon Storage Pilot Project demonstrated that CO injected into >800 m deep Columbia River Basalt Group flow top reservoirs mineralizes on month-year timescales. Herein, we present new optical petrography, micro-computed X-ray tomography, and electron microscopy results obtained from sidewall cores collected two years after CO injection.
View Article and Find Full Text PDFInjecting fluids into deep underground geologic structures is a critical component to development of long-term strategies for managing greenhouse gas emissions and facilitating energy extraction operations. Recently, we reported that metal-organic frameworks are low-frequency, absorptive-acoustic metamaterial that may be injected into the subsurface to enhance geophysical monitoring tools used to track fluids and map complex structures. A key requirement for this nanotechnology deployment is transportability through porous geologic media without being retained by mineral-fluid interfaces.
View Article and Find Full Text PDFInjecting fluids into underground geologic structures is crucial for the development of long-term strategies for managing captured carbon and facilitating sustainable energy extraction operations. We have previously reported that the injection of metal-organic frameworks (MOFs) into the subsurface can enhance seismic monitoring tools to track fluids and map complex structures, reduce risk, and verify containment in carbon storage reservoirs because of their absorption capacity of low-frequency seismic waves. Here, we demonstrate that water-based Cr/Zn/Zr MOF colloidal suspensions (nanofluids) are multimodal geophysical contrast agents that enhance near-wellbore logging tools.
View Article and Find Full Text PDFConspectusWith the worldwide demand for refrigeration and cooling expected to triple, it is increasingly important to search for alternative energy resources to drive refrigeration cycles with reduced electricity consumption. Recently, adsorption cooling has gained increased attention since energy reallocation in such systems is based on gas adsorption/desorption, which can be driven by waste/natural heat sources. Eco-friendly sorption-based cooling relies on the cyclic transfer of refrigerant gas from a high to low energy state by the pseudocompression effect resulting from adsorption and desorption.
View Article and Find Full Text PDF