Context: During pregnancy, women who experience certain pregnancy complications show elevations in biomarkers of inflammation and insulin resistance; however, few studies have examined these cardiometabolic biomarkers in the decade following pregnancy.
Objective: To examine the association between pregnancy complications and cardiometabolic biomarkers 9 years postpartum including: blood pressure, blood lipids, body fat percentage, insulin resistance (glucose, insulin, proinsulin, C-peptide, HOMA-IR, HbA1c, leptin, adiponectin) and inflammation (hs-C-reactive protein).
Methods: Using data from the Maternal-Infant Research on Environmental Chemicals (MIREC) cohort study (2008-2021) we determined 3 groups of pregnancy complications: 1) hypertensive disorders of pregnancy (HDP) (n=35); any pregnancy complication in the index pregnancy, defined as preterm birth, HDP, impaired glucose tolerance or gestational diabetes mellitus (GDM) (n=55); or self-reported recurrence of one of these pregnancy complications (n=19).
Background: Evaluating individual health outcomes does not capture co-morbidities children experience.
Purpose: We aimed to describe profiles of child neurodevelopment and anthropometry and identify their predictors.
Methods: Using data from 501 mother-child pairs (age 3-years) in the Maternal-Infant Research on Environmental Chemicals (MIREC) Study, a prospective cohort study, we developed phenotypic profiles by applying latent profile analysis to twelve neurodevelopmental and anthropometric traits.
Background: Cardiometabolic risk factors among youth are rising. Epigenetic age acceleration, a biomarker for aging and disease-risk, has been associated with adiposity in children, but its association with other cardiometabolic risk markers remains understudied. We employed data from the Health Outcomes and Measures of the Environment (HOME) study, a prospective pregnancy and birth cohort in the greater Cincinnati metropolitan area, to examine whether accelerated epigenetic age at birth as well as accelerated epigenetic age and faster pace of biological aging at age 12 years were associated with higher cardiometabolic risk in adolescents.
View Article and Find Full Text PDF