Current treatments for trauma-related disorders remain ineffective for many patients. Fear extinction deficiency is a prominent feature of these diseases, and many behavioral treatments rely on extinction training. However, in many patients, therapy is followed by a relapse of symptoms, and the underpinnings of such interindividual variations in vulnerability to relapse remain unknown.
View Article and Find Full Text PDFSingle sub-anesthetic doses of ketamine can exacerbate the symptoms of patients diagnosed with schizophrenia, yet similar ketamine treatments rapidly reduce depressive symptoms in major depression. Acute doses of the atypical antipsychotic drug clozapine have also been shown to counteract ketamine-induced psychotic effects. In the interest of understanding whether these drug effects could be modeled with alterations in neuroplasticity, we examined the impact of acutely-administered ketamine and clozapine on in vivo long-term potentiation (LTP) in the rat's hippocampus-to-prefrontal cortex (H-PFC) pathway.
View Article and Find Full Text PDFRodents are exquisitely sensitive to light and optogenetic behavioral experiments routinely introduce light-delivery materials into experimental situations, which raises the possibility that light could leak and influence behavioral performance. We examined whether rats respond to a faint diffusion of light, termed caplight, which emanated through the translucent dental acrylic resin used to affix deep-brain optical cannulas in place. Although rats did not display significant changes in locomotion or rearing to caplight in a darkened open field, they did acquire conditional fear via caplight-footshock pairings.
View Article and Find Full Text PDFDespite the vast amount of research on schizophrenia and depression in the past two decades, there have been few innovative drugs to treat these disorders. Precompetitive research collaborations between companies and academic groups can help tackle this innovation deficit, as illustrated by the achievements of the IMI-NEWMEDS consortium.
View Article and Find Full Text PDFWhile miniature inertial sensors offer a promising means for precisely detecting, quantifying and classifying animal behaviors, versatile inertial sensing devices adapted for small, freely-moving laboratory animals are still lacking. We developed a standalone and cost-effective platform for performing high-rate wireless inertial measurements of head movements in rats. Our system is designed to enable real-time bidirectional communication between the headborne inertial sensing device and third party systems, which can be used for precise data timestamping and low-latency motion-triggered applications.
View Article and Find Full Text PDF