Background: Pathologic tissue remodeling with scarring and tissue rigidity has been demonstrated in inflammatory, autoimmune, and allergic diseases. Eosinophilic esophagitis (EoE) is an allergic disease that is diagnosed and managed by repeated biopsy procurement, allowing an understanding of tissue fibroblast dysfunction. While EoE-associated tissue remodeling causes clinical dysphagia, food impactions, esophageal rigidity, and strictures, molecular mechanisms driving these complications remain under investigation.
View Article and Find Full Text PDFHypertensive vascular disease (HVD) is a major health burden globally and is a comorbidity commonly associated with other metabolic diseases. Many factors are associated with HVD including obesity, diabetes, smoking, chronic kidney disease, and sterile inflammation. Increasing evidence points to neutrophils as an important component of the chronic inflammatory response in HVD.
View Article and Find Full Text PDFEndosomal Toll-like receptors (eTLRs) are essential for the sensing of non-self through RNA and DNA detection. Here, using spatiotemporal analysis of vesicular dynamics, super-resolution microscopy studies, and functional assays, we show that endomembrane defects associated with the deficiency of the small GTPase Rab27a cause delayed eTLR ligand recognition, defective early signaling, and impaired cytokine secretion. Rab27a-deficient neutrophils show retention of eTLRs in amphisomes and impaired ligand internalization.
View Article and Find Full Text PDFThe prevalence of "long COVID" is just one of the conundrums highlighting how little we know about the lung's response to viral infection, particularly to syndromecoronavirus-2 (SARS-CoV-2), for which the lung is the point of entry. We used an in vitro human lung system to enable a prospective, unbiased, sequential single-cell level analysis of pulmonary cell responses to infection by multiple SARS-CoV-2 strains. Starting with human induced pluripotent stem cells and emulating lung organogenesis, we generated and infected three-dimensional, multi-cell-type-containing lung organoids (LOs) and gained several unexpected insights.
View Article and Find Full Text PDF