Analytical technologies and methods play a pivotal role in attribute understanding and control which are essential to the rapidly evolving field of pharmaceutical development and manufacturing. These technologies are advancing quickly, where innovations often involve both new scientific approaches and novel applications of established techniques. In many cases, the lack of harmonized global regulatory expectations presents challenges for the adoption of advanced technologies.
View Article and Find Full Text PDFPreviously, we found that retinas of young male mice were more damaged than those of young female mice in the sodium iodate (NaIO) model. The purpose of this study was to test whether reducing testosterone levels would be retina-protective. Male C57Bl/6J mice underwent surgical castration or sham surgery, then were given an intraperitoneal injection of NaIO at 25 mg/kg.
View Article and Find Full Text PDFAppearance-related content is ubiquitous across highly visual social media platforms, in both imagery and text. The present study aims to explore the content of text-based interactions initiated by self-images on Instagram. Seventeen adolescent girls from the UK (Age M = 15.
View Article and Find Full Text PDFIdentifying highly specific T cell receptors (TCRs) or antibodies against epitopic peptides presented by class I major histocompatibility complex (MHC I) proteins remains a bottleneck in the development of targeted therapeutics. Here, we introduce targeted recognition of antigen-MHC complex reporter for MHC I (TRACeR-I), a generalizable platform for targeting peptides on polymorphic HLA-A*, HLA-B* and HLA-C* allotypes while overcoming the cross-reactivity challenges of TCRs. Our TRACeR-MHC I co-crystal structure reveals a unique antigen recognition mechanism, with TRACeR forming extensive contacts across the entire peptide length to confer single-residue specificity at the accessible positions.
View Article and Find Full Text PDFMajor histocompatibility complex class II (MHCII) bound to a peptide antigen mediates interactions between CD4 T cells and antigen-presenting cells. Targeting peptide-MHCII with T cell antigen receptors (TCRs) and TCR-like antibodies has shown promise for autoimmune diseases and microbiome tolerance. To develop a general targeting approach, we introduce targeted recognition of antigen-MHC complex reporter for MHCII (TRACeR-II) for the rapid development of peptide-specific MHCII binders.
View Article and Find Full Text PDF