Background Prostate MRI for the detection of clinically significant prostate cancer (csPCa) is standardized by the Prostate Imaging Reporting and Data System (PI-RADS), currently in version 2.1. A systematic review and meta-analysis infrastructure with a 12-month update cycle was established to evaluate the diagnostic performance of PI-RADS over time.
View Article and Find Full Text PDFBackground: In this work, we compare input level, feature level and decision level data fusion techniques for automatic detection of clinically significant prostate lesions (csPCa).
Methods: Multiple deep learning CNN architectures were developed using the Unet as the baseline. The CNNs use both multiparametric MRI images (T2W, ADC, and High b-value) and quantitative clinical data (prostate specific antigen (PSA), PSA density (PSAD), prostate gland volume & gross tumor volume (GTV)), and only mp-MRI images (n = 118), as input.
Objectives: Achieving a consensus on a definition for different aspects of radiomics workflows to support their translation into clinical usage. Furthermore, to assess the perspective of experts on important challenges for a successful clinical workflow implementation.
Materials And Methods: The consensus was achieved by a multi-stage process.