The estimation of whole stream metabolism, as determined by photosynthesis and respiration, is critical to our understanding of carbon cycling and carbon subsidies to aquatic food-webs. The mass development of aquatic plants is a worldwide problem for human activities and often occurs in regulated rivers, altering biodiversity and ecosystem functions. Hydropower plants supersaturate water with gases and prevent the use of common whole stream metabolism models to estimate ecosystem respiration.
View Article and Find Full Text PDFAnthropogenic inputs of nutrients and organic matter are common in tropical lowland rivers while little is known about the pollution-induced changes in oxygen availability and respiratory performance of ectotherms in these high temperature systems. We investigated the effects of agriculture and urban land-use on river water oxygen levels (diel measurements), decomposition rates (Wettex) and macroinvertebrate assemblages (field studies), as well as the oxy-regulatory capacity of eight riverine macroinvertebrate taxa (laboratory study) from a tropical lowland river network in Myanmar. The highest decomposition rates (0.
View Article and Find Full Text PDFMacrophytes are generally considered a nuisance when they interfere with human activities. To combat perceived nuisance, macrophytes are removed, and considerable resources are spent every year worldwide on this practice. Macrophyte removal can, however, have severe negative impacts on ecosystem structure and functioning and interfere with management goals of healthy freshwater ecosystems.
View Article and Find Full Text PDF