17-β-estradiol, involved in mesothelioma pathogenesis, and its precursors were explored as potential biomarkers for the early diagnosis of mesothelioma. Using enzyme-linked immunosorbent assay(ELISA) for 17-β-estradiol and ultra-high performance liquid chromatography/tandem mass spectrometry(UHPLC-MS/MS) for 19 17-β-estradiol precursors, a comprehensive analysis of 20steroid hormones was conducted in the serum of mesothelioma patients(n=67), asbestos-exposed healthy subjects(n=39), and non-asbestos-exposed healthy subjects(n=35). Bioinformatics analysis explored three potential serum biomarkers: 17-β-estradiol, DHEA-S, and androstenedione.
View Article and Find Full Text PDFBackground: Based on previous studies highlighting that the induction of cyclooxygenase-2 (COX-2) and high prostaglandin E2 (PGE2) levels contribute to the pathogenesis of malignant pleural mesothelioma (MPM), and that aromatase (CYP19A1), an enzyme that plays a key role in estrogen biosynthesis, along with estradiol (E2) were expressed in MPM, this study aimed to investigate the possible interplay between COX-2 and CYP19A1 in the pathogenesis of mesothelioma, as well as the underlying mechanism.
Methods: The interaction between COX-2 and CYP19A1 was first investigated on different MPM lines upon PGE2, and COX-2 inhibitor (rofecoxib) treatment by western blot, RT-PCR. The key regulatory pathways involved in the COX-2 and CYP19A1 axis were further studied in MPM cells, after rofecoxib and exemestane (CYP19A1 inhibitor) treatment in monotherapy and in combination, by cell cycle distribution, western blot, and combination index analysis.