Over the last decade, functional ultrasound (fUS) has risen as a critical tool in functional neuroimaging, leveraging hemodynamic changes to infer neural activity indirectly. Recent studies have established a strong correlation between neural spike rates (SR) and functional ultrasound signals. However, understanding their spatial distribution and variability across different brain areas is required to thoroughly interpret fUS signals.
View Article and Find Full Text PDFObjective: Parkinson's disease (PD) patients exhibit changes in mechanisms underlying movement preparation, particularly the suppression of corticospinal excitability - termed "preparatory suppression" - which is thought to facilitate movement execution in healthy individuals. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) being an attractive treatment for advanced PD, we aimed to study the potential contribution of this nucleus to PD-related changes in such corticospinal dynamics.
Methods: On two consecutive days, we applied single-pulse transcranial magnetic stimulation to the primary motor cortex of 20 advanced PD patients treated with bilateral STN-DBS (ON vs.
Background: Subthalamic deep brain stimulation (STN-DBS) is a well-established therapy to treat Parkinson's disease (PD). However, the STN-DBS sub-target remains debated. Recently, a white matter tract termed the hyperdirect pathway (HDP), directly connecting the motor cortex to STN, has gained interest as HDP stimulation is hypothesized to drive DBS therapeutic effects.
View Article and Find Full Text PDF