In the central nervous system, the formation of myelin by oligodendrocytes (OLs) relies on the switch from the polymerization of the actin cytoskeleton to its depolymerization. The molecular mechanisms that trigger this switch have yet to be elucidated. Here, we identified P21-activated kinase 1 (PAK1) as a major regulator of actin depolymerization in OLs.
View Article and Find Full Text PDFOligodendrocytes (OLs) are the myelinating cells of the central nervous system (CNS), which are derived from OL precursor cells. Myelin insulates axons allowing the saltatory conduction of action potentials and also provides trophic and metabolic supports to axons. Interestingly, oligodendroglial cells have the capacity to sense neuronal activity, which regulates myelin sheath formation via the vesicular release of neurotransmitters.
View Article and Find Full Text PDFInnate immunity is an ancestral process that can induce pro- and anti-inflammatory states. A major challenge is to characterize transcriptional cascades that modulate the response to inflammation. Since the Drosophila glial cells missing (Gcm) transcription factor has an anti-inflammatory role, we explored its regulation and evolutionary conservation.
View Article and Find Full Text PDFThe p70 ribosomal S6 kinases (p70 ribosomal S6 kinase 1 and p70 ribosomal S6 kinase 2) are downstream targets of the mechanistic target of rapamycin signalling pathway. p70 ribosomal S6 kinase 1 specifically has demonstrated functions in regulating cell size in and in insulin-sensitive cell populations in mammals. Prior studies demonstrated that the mechanistic target of the rapamycin pathway promotes oligodendrocyte differentiation and developmental myelination; however, how the immediate downstream targets of mechanistic target of rapamycin regulate these processes has not been elucidated.
View Article and Find Full Text PDF