Publications by authors named "B Nabet"

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors are commonly used to treat non-small cell lung cancers with EGFR mutations, but drug resistance often emerges. Intratumor heterogeneity is a known cause of targeted therapy resistance and is considered a major factor in treatment failure. This study identifies clones of EGFR-mutant non-small cell lung tumors expressing low levels of both wild-type and mutant EGFR protein.

View Article and Find Full Text PDF

Kirsten rat sarcoma viral oncogene homolog (KRAS) is the most frequently mutated oncogene in lung adenocarcinoma, with G12C and G12V being the most predominant forms. Recent breakthroughs in KRASG12C inhibitors have transformed the clinical management of patients with the G12C mutation and advanced our understanding of the function of this mutation. However, little is known about the targeted disruption of KRASG12V, partly due to a lack of specific inhibitors.

View Article and Find Full Text PDF

Blockade of immune checkpoints PD-1 and TIGIT has demonstrated activity in mouse tumor models and human patients with cancer. Although these coinhibitory receptors can restrict signaling in CD8 T cells by regulating their associated co-stimulatory receptors CD28 and CD226, the functional consequences of combining PD-1 and TIGIT blockade remain poorly characterized. In mouse tumor models, we show that combination blockade elicited CD226-driven clonal expansion of tumor antigen-specific CD8 T cells.

View Article and Find Full Text PDF

Checkpoint inhibitors targeting programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) have revolutionized cancer therapy across many indications including urothelial carcinoma (UC). Because many patients do not benefit, a better understanding of the molecular mechanisms underlying response and resistance is needed to improve outcomes. We profiled tumors from 2,803 UC patients from four late-stage randomized clinical trials evaluating the PD-L1 inhibitor atezolizumab by RNA sequencing (RNA-seq), a targeted DNA panel, immunohistochemistry, and digital pathology.

View Article and Find Full Text PDF

Resistance to immune checkpoint inhibitors (ICIs) is common, even in tumors with T cell infiltration. We thus investigated consequences of ICI-induced T cell infiltration in the microenvironment of resistant tumors. T cells and neutrophil numbers increased in ICI-resistant tumors following treatment, in contrast to ICI-responsive tumors.

View Article and Find Full Text PDF