Photoporation with free photothermal nanoparticles (NPs) is a promising technology for gentle delivery of functional biomacromolecules into living cells, offering great flexibility in terms of cell types and payload molecules. However, the translational use of photoporation, such as for transfecting patient-derived cells for cell therapies, is hampered by safety and regulatory concerns as it relies on direct contact between cells and photothermal NPs. A solution is to embed the photothermal NPs in electrospun nanofibers, which form a substrate for cell culture.
View Article and Find Full Text PDFIntroduction: Discrepancies between electrolyte concentrations determined by blood gas analysers (BGA) and core-lab chemistry analysers may create confusion in clinical practice. This problem is rooted in the different ion-selective electrode (ISE) methodologies that are used. Whilst most available chemistry analysers use indirect ISE, we evaluated the analytical performance of the new automated chemistry analyser Biossays™ E6 (Snibe), equipped with direct ISE, for the determination of sodium (Na), potassium (K), chloride (Cl), ionized calcium (iCa) and pH.
View Article and Find Full Text PDFIn vitro cultures remain crucial for studying the fundamental mechanisms of human T-cell development. Here, we introduce a novel in vitro cultivation system based on ThymoSpheres (TS): dense spheroids consisting of DLL4-expressing stromal cells and human hematopoietic precursor cells, in the absence of thymic epithelial cells. These spheroids are subsequently cultured at the air-liquid interphase.
View Article and Find Full Text PDFCD70 is an attractive target for chimeric antigen receptor (CAR) T-cell therapy for the treatment of both solid and liquid malignancies. However, the functionality of CD70-specific CAR T cells is modest. We optimized a CD70-specific VHH-based CAR (nanoCAR).
View Article and Find Full Text PDFNon-small cell lung cancer (NSCLC) is known for high relapse rates despite resection in early stages. Here, we present the results of a phase I clinical trial in which a dendritic cell (DC) vaccine targeting patient-individual neoantigens is evaluated in patients with resected NSCLC. Vaccine manufacturing is feasible in six of 10 enrolled patients.
View Article and Find Full Text PDF