Publications by authors named "B N Usenbekov"

In vitro androgenesis is a unique model for producing homozygous doubled haploid plants. The use of haploid biotechnology accelerates to obtain of doubled haploid plants, which is very important in rice breeding. The purpose of this work is to improve the production of doubled haploids in rice anther culture in vitro and selection of doubled haploid plants with valuable traits.

View Article and Find Full Text PDF

Rice (Oryza sativa L.) grown in many countries around the world with different climatic conditions and a huge number of environmental stresses, both biotic (fungi, bacteria, viruses, insects) and abiotic (cold, drought, salinity) limit rice productivity. In this regard, breeders and scientists are trying to create rice lines that are resistant to multiple stresses.

View Article and Find Full Text PDF

Improving grain quality in rice breeding is one of the main tasks. This concerns the creation of rice varieties with colored pericarp uncommon in the Republic of Kazakhstan, and the assessment of its quality is an important stage of breeding. Rice with colored pericarp is an important dietary crop, more useful for the human body than white rice.

View Article and Find Full Text PDF

Due to the environment pollution by cadmium (Cd) near industrial metallurgic factories and the widespread use of phosphorus fertilizers, the problem of toxic Cd effect on plants is well discussed by many authors, but the phytotoxicity of Cd under iron (Fe) deficiency stress has not been sufficiently studied. The aim of the work was to study comprehensively the effect of Cd under Fe deficiency conditions on physiological, biochemical, and anatomical parameters of rice varieties, to identify varietal differences in plant response to the effect of double stress. Relative resistance and sensitivity to the joint effect of Cd and Fe deficiency stress rice varieties have been identified.

View Article and Find Full Text PDF

The aim of this paper was to study the effect of plant growth regulators on callus induction and morphogenesis using various explants of to develop an efficient plant regeneration protocol. Different plant organ sections (leaves, apical shoot tips, petals, nodes, and internodes) were cultured as explants to identify the best explants responsive to callus induction and plant regeneration. Explants were cultivated on MS media supplemented with different concentrations of plant growth regulators (TDZ (Thidiazuron), BAP (6-Benzylaminopurine), kinetin, and NAA (1-Naphthaleneacetic acid).

View Article and Find Full Text PDF