Publications by authors named "B N Melgert"

Bacterial respiratory infections are a major global health concern, often leading to lung injury and triggering lung repair mechanisms. Endogenous epithelial progenitor cells are crucial in this repair, yet the mechanisms remain poorly understood. This study investigates the response of lung epithelial progenitor cells to injury induced by lipopolysaccharide (LPS), a component of gram-negative bacteria, focusing on their regulation during lung repair.

View Article and Find Full Text PDF

Background: Alteration of airway neuronal function and density and bidirectional interaction between immune cells and sensory peripheral nerves have been proposed to trigger and perpetuate inflammation that contribute to asthma severity. To date, few studies analysed neuroplasticity and neuroinflammation in tissue of asthmatic individuals. We hypothesized that the presence of these phenomena would be a pathological feature in fatal asthma.

View Article and Find Full Text PDF

Epidemiological studies have shown that smoking is associated with increased incidence of severe viral infections leading to hospitalization. Moreover, studies in experimental models have identified impaired antiviral responses and altered inflammatory responses, yet it is unclear how the effects of smoke exposure and influenza A infection interact and how this varies over the course of infection. We hypothesized that smoking would exacerbate innate immune responses against influenza.

View Article and Find Full Text PDF

Throughout their lifecycle, from production to use and upon disposal, plastics release chemicals and particles known as micro- and nanoplastics (MNPs) that can accumulate in the environment. MNPs have been detected in different locations of the human body, including in our lungs. This is likely a consequence of MNP exposure through the air we breathe.

View Article and Find Full Text PDF

Extracellular matrix (ECM) remodeling has been implicated in the irreversible obstruction of airways and destruction of alveolar tissue in chronic obstructive pulmonary disease (COPD). Studies investigating differences in the lung ECM in COPD have mainly focused on some collagens and elastin, leaving an array of ECM components unexplored. We investigated the differences in the ECM landscape comparing severe-early onset (SEO)-COPD and moderate COPD to control lung tissue for collagen type I α chain 1 (COL1A1), collagen type VI α chain 1 (COL6A1); collagen type VI α chain 2 (COL6A2), collagen type XIV α chain 1 (COL14A1), fibulin 2 and 5 (FBLN2 and FBLN5), latent transforming growth factor β binding protein 4 (LTBP4), lumican (LUM), versican (VCAN), decorin (DCN), and elastin (ELN) using image analysis and statistical modeling.

View Article and Find Full Text PDF