Publications by authors named "B Munkhbat"

Quantum emitters in transition metal dichalcogenides (TMDs) have recently emerged as a promising platform for generating single photons for optical quantum information processing. In this work, we present an approach for deterministically controlling the polarization of fabricated quantum emitters in a tungsten diselenide (WSe) monolayer. We employ novel nanopillar geometries with long and sharp tips to induce a controlled directional strain in the monolayer, and we report on fabricated WSe emitters producing single photons with a high degree of polarization (99 ± 4%) and high purity ( (0) = 0.

View Article and Find Full Text PDF

Clinical and biochemical features of hepatitis delta virus (HDV) infections in Mongolia remain largely unknown. We aimed to investigate the clinical characteristics of HDV patients in Mongolia using several markers. The 143 hepatitis B surface antigen (HBsAg)-positive patients were divided into 122 HDV-positive and 21 HDV-negative patients by HDV RNA positivity.

View Article and Find Full Text PDF

Optical anapoles are intriguing charge-current distributions characterized by a strong suppression of electromagnetic radiation. They originate from the destructive interference of the radiation produced by electric and toroidal multipoles. Although anapoles in dielectric structures have been probed and mapped with a combination of near- and far-field optical techniques, their excitation using fast electron beams has not been explored so far.

View Article and Find Full Text PDF

Transition metal dichalcogenides (TMDs) attract significant attention due to their remarkable optical and excitonic properties. It was understood already in the 1960s and recently rediscovered that many TMDs possess a high refractive index and optical anisotropy, which make them attractive for nanophotonic applications. However, accurate analysis and predictions of nanooptical phenomena require knowledge of dielectric constants along both in- and out-of-plane directions and over a broad spectral range, information that is often inaccessible or incomplete.

View Article and Find Full Text PDF

Spontaneous formation of ordered structures-self-assembly-is ubiquitous in nature and observed on different length scales, ranging from atomic and molecular systems to micrometre-scale objects and living matter. Self-ordering in molecular and biological systems typically involves short-range hydrophobic and van der Waals interactions. Here we introduce an approach to micrometre-scale self-assembly based on the joint action of attractive Casimir and repulsive electrostatic forces arising between charged metallic nanoflakes in an aqueous solution.

View Article and Find Full Text PDF