Motor cortical high-gamma oscillations (60-90 Hz) occur at movement onset and are spatially focused over the contralateral primary motor cortex. Although high-gamma oscillations are widely recognized for their significance in human motor control, their precise function on a cortical level remains elusive. Importantly, their relevance in human stroke pathophysiology is unknown.
View Article and Find Full Text PDFBackground: Theta-gamma transcranial alternating current stimulation (tACS) was recently found to enhance thumb acceleration in young, healthy participants, suggesting a potential role in facilitating motor skill acquisition. Given the relevance of motor skill acquisition in stroke rehabilitation, theta-gamma tACS may hold potential for treating stroke survivors.
Objective: We aimed to examine the effects of theta-gamma tACS on motor skill acquisition in young, healthy participants and stroke survivors.
The Solar eruptioN Integral Field Spectrograph (SNIFS) is a solar-gazing spectrograph scheduled to fly in the summer of 2025 on a NASA sounding rocket. Its goal is to view the solar chromosphere and transition region at a high cadence (1 s) both spatially ( ) and spectrally (33 mÅ) viewing wavelengths around Lyman alpha (1216 Å), Si iii (1206 Å), and O v (1218 Å) to observe spicules, nanoflares, and possibly a solar flare. This time cadence will provide yet-unobserved detail about fast-changing features of the Sun.
View Article and Find Full Text PDFViruses persist in nature owing to their extreme genetic heterogeneity and large population sizes, which enable them to evade host immune defenses, escape antiviral drugs, and adapt to new hosts. The persistence of viruses is challenging to study because mutations affect multiple virus genes, interactions among genes in their impacts on virus growth are seldom known, and measures of viral fitness are yet to be standardized. To address these challenges, we employed a data-driven computational model of cell infection by a virus.
View Article and Find Full Text PDF