A life cycle inventory (LCI) dataset for food waste management was developed using secondary data from scientific literature and government reports. EPA reports on food waste management were used as the basis for collecting literature to review. Unit process parameters from the reviewed literature are compiled and combined with engineering calculations to generate LCI for food management pathways.
View Article and Find Full Text PDFIntroduction: This observational study conducted across seven emergency care units compares the efficacy of four D-dimer detection methods, namely HemosIL D-dimer HS (HS), HemosIL D-dimer HS-500 (HS-500), VIDAS D-dimer (VIDAS), and HemosIL AcuStar D-dimer (ACUSTAR). The primary focus is on patients with a clinical suspicion of deep venous thrombosis (DVT) or pulmonary embolism (PE).
Methods: A total of 149 samples were collected from patients with suspected DVT or PE.
Background: Impella 5.5 (Abiomed; Danvers, MA) (IMP5) is a commonly used, surgically implanted, tMCS device that requires systemic anticoagulation and purge solution to avoid pump failure. To avoid heparin-induced thrombocytopenia (HIT) from unfractionated heparin (UFH) use, our program has explored the utility of bivalirudin (BIV) for systemic anticoagulation and sodium bicarbonate-dextrose purge solution (SBPS) in IMP5.
View Article and Find Full Text PDFLife Cycle Assessment (LCA) is an established and standardized methodology to comprehensively assess environmental and public health metrics across industries and products (International Organization for Standardization, 2006). The United States Environmental Protection Agency (USEPA) is developing an open source LCA tool ecosystem (Ingwersen, 2019). The ecosystem includes tools to automate the creation of life cycle inventory (LCI) datasets, which account for flows to and from nature for steps across the life cycle of products or services, and tools for life cycle impact assessment (LCIA) to support classification and characterization of the cumulative LCI to potential impacts.
View Article and Find Full Text PDFOnsite non-potable reuse (NPR) is a way for buildings to conserve water using onsite sources for uses like toilet flushing, laundry and irrigation. Although early case study results are promising, aspects like system suitability, cost and environmental performance remain difficult to quantify and compare across broad geographic contexts and variable system configurations. In this study, we evaluate four NPR system types - rainwater harvesting (RWH), air-conditioning condensate harvesting (ACH), and source-separated graywater and mixed wastewater membrane bioreactors (GWMBR, WWMBR) - in terms of their ability to satisfy onsite non-potable demand, their environmental impacts and their economic cost.
View Article and Find Full Text PDF