Tumor-associated macrophages (TAM) are a major supportive component within neoplasms and are characterized by a plethora of functions that facilitate tumor outgrowth. Mechanisms of macrophage attraction and differentiation to a tumor-promoting phenotype, defined among others by distinct cytokine patterns such as pronounced interleukin (IL-10) production, are ill-defined. We aimed to identify signaling pathways that contribute to the generation of TAM-like macrophages using an adenoviral RNAi-based approach.
View Article and Find Full Text PDFTumor-associated macrophages (TAMs) are a major supportive component within neoplasms. Mechanisms of macrophage (MΦ) attraction and differentiation to a tumor-promoting phenotype, which is characterized by pronounced interleukin (IL)-10 production, are under investigation. We report that supernatants of dying cancer cells induced substantial IL-10 release from primary human MΦs, dependent on signaling through tyrosine kinase receptor A (TRKA or neurotrophic tyrosine kinase receptor type 1 (NTRK1)).
View Article and Find Full Text PDFHuman protein S (PS), a cofactor of anticoagulant-activated protein C (APC), is a modular protein containing 4 epidermal growth factor (EGF)-like domains. EGF1 appears to mediate PS interaction with APC, but the roles of EGFs 2, 3, and 4 are less clear. We synthesized PS variants lacking single EGF domains (EGF2, 3, or 4) and assessed their APC cofactor activity in a factor Va inactivation assay.
View Article and Find Full Text PDFWe have identified 2 PROS1 missense mutations in the exon that encodes the vitamin K-dependent Gla domain of protein S (Gly11Asp and Thr37Met) in kindred with phenotypic protein S deficiency and thrombosis. In studies using recombinant proteins, substitution of Gly11Asp did not affect production of protein S but resulted in 15.2-fold reduced protein S activity in a factor Va inactivation assay.
View Article and Find Full Text PDFWhile many mutations thought to result in protein S (PS) deficiency are known, there have been few attempts to relate genotype expression with plasma phenotype. We have investigated the nature and consequence of PS gene (PROS1) mutations in 17 PS-deficient families who presented with mixed type I and type III phenotypes. Seven different mutations were found in nine families: delG-34 (STOP codon at -24), Val-24Glu, Arg49Cys, Asn217Ser, Gly295Val, +5 G to A intron j and His623Pro.
View Article and Find Full Text PDF