Background/objectives: Prolactin-releasing peptide (PrRP) has a potential to decrease food intake and ameliorate obesity, but is ineffective after peripheral administration. We have previously shown that our novel lipidized analogs PrRP enhances its stability in the circulation and enables its central effect after peripheral application. The purpose of this study was to explore if sub-chronic administration of novel PrRP analog palmitoylated in position 11 (palm-PrRP31) to Koletsky-spontaneously hypertensive obese rats (SHROB) could lower body weight and glucose intolerance as well as other metabolic parameters.
View Article and Find Full Text PDFAnalogs of anorexigenic neuropeptides, such as prolactin-releasing peptide (PrRP), have a potential as new anti-obesity drugs. In our previous study, palmitic acid attached to the N-terminus of PrRP enabled its central anorexigenic effects after peripheral administration. In this study, two linkers, γ-glutamic acid at Lys11 and a short, modified polyethylene glycol at the N-terminal Ser and/or Lys11, were applied for the palmitoylation of PrRP31 to improve its bioavailability.
View Article and Find Full Text PDFMol Cell Endocrinol
November 2016
Obesity is a risk factor that worsens cardiovascular events leading to higher morbidity and mortality. However, the exact mechanisms of relation between obesity and cardiovascular events are unclear. Nevertheless, it has been demonstrated that pharmacological therapy for obesity has great potential to improve some cardiovascular problems.
View Article and Find Full Text PDFObesity is an escalating epidemic, but an effective noninvasive therapy is still scarce. For obesity treatment, anorexigenic neuropeptides are promising tools, but their delivery from the periphery to the brain is complicated because peptides have a low stability and limited ability to cross the blood-brain barrier. In this review, we summarize results of several studies with our newly designed lipidized analogs of prolactin-releasing peptide (PrRP).
View Article and Find Full Text PDFAnorexigenic neuropeptides produced and acting in the brain have the potential to decrease food intake and ameliorate obesity, but are ineffective after peripheral application, owing to a limited ability to cross the blood-brain barrier. We have designed lipidized analogs of prolactin-releasing peptide (PrRP), which is involved in energy balance regulation as demonstrated by obesity phenotypes of both Prrp-knockout and Prrp receptor-knockout mice. The aim of this study was to characterize the subchronic effect of a palmitoylated PrRP analog in two rat models of obesity and diabetes: diet-induced obese Sprague-Dawley rats and leptin receptor-deficient Zucker diabetic (ZDF) rats.
View Article and Find Full Text PDF