New paradigms are required in microelectronics when the transistor is in its downscaling limit and integration of materials presenting functional properties not available in classical silicon is one of the promising alternatives. Here, we demonstrate the possibility to grow LaSrMnO (LSMO) functional materials on amorphous substrates with properties close to films grown on single-crystalline substrates using a two-dimensional seed layer. X-ray diffraction and electron backscatter diffraction mapping demonstrate that the CaNbO nanosheet (NS) layer induces epitaxial stabilization of LSMO films with a strong out-of-plane (001) texture, whereas the growth of LSMO films on uncoated glass substrates exhibits a nontextured polycrystalline phase.
View Article and Find Full Text PDFTransition metal oxides having a perovskite structure form a wide and technologically important class of compounds. In these systems, ferroelectric, ferromagnetic, ferroelastic, or even orbital and charge orderings can develop and eventually coexist. These orderings can be tuned by external electric, magnetic, or stress field, and the cross-couplings between them enable important multifunctional properties, such as piezoelectricity, magneto-electricity, or magneto-elasticity.
View Article and Find Full Text PDF2D electron systems (2DESs) in functional oxides are promising for applications, but their fabrication and use, essentially limited to SrTiO3 -based heterostructures, are hampered by the need for growing complex oxide overlayers thicker than 2 nm using evolved techniques. It is demonstrated that thermal deposition of a monolayer of an elementary reducing agent suffices to create 2DESs in numerous oxides.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2015
Capacitors with a dielectric material consisting of amorphous laminates of Al2O3 and TiO2 with subnanometer individual layer thicknesses can show strongly enhanced capacitance densities compared to the bulk or laminates with nanometer layer thickness. In this study, the structural and dielectric properties of such subnanometer laminates grown on silicon by state-of-the-art atomic layer deposition are investigated with varying electrode materials. The laminates show a dielectric constant reaching 95 combined with a dielectric loss (tan δ) of about 0.
View Article and Find Full Text PDFWe study the transport properties in SrVO3/LaVO3 (SVO/LVO) superlattices deposited on SrTiO3 (STO) substrates. We show that the electronic conduction occurs in the metallic LVO layers with a galvanomagnetism typical of a 2D Fermi surface. In addition, a Kondo-like component appears in both the thermal variation of resistivity and the magnetoresistance.
View Article and Find Full Text PDF