Derivatives of the 4-fluorobenzyl dimethylpiperazine-indole class of p38alpha MAP kinase inhibitors are described. Biological evaluation of these compounds focused on maintaining activity while improving pharmacokinetic (PK) properties. Improved properties were observed for structures bearing substitutions on the benzylic methylene.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2010
The design and synthesis of a new class of p38alpha MAP kinase inhibitors based on 4-fluorobenzylpiperidine heterocyclic oxalyl amides are described. Many of these compounds showed low-nanomolar activities in p38alpha enzymatic and cell-based cytokine TNFalpha production inhibition assays. The optimal linkers between the piperidine and the oxalyl amide were found to be [6,5] fused ring heterocycles.
View Article and Find Full Text PDFA family of aryl-substituted maleimides was prepared and studied for their activity against calmodulin dependant kinase. Inhibitory activities against the enzyme ranged from 10nM to >20microM and were dependant upon both the nature of the aryl group and the tether joining the basic amine to the indolyl maleimide core of the inhibitors. Key interactions with the kinase ATP site and hinge region, predicted by homology modeling, were confirmed.
View Article and Find Full Text PDFA family of aryl-substituted maleimides was prepared and studied for their activity against calmodulin dependant kinase. Inhibitory activities against the enzyme ranged from 34nM to >20microM and were dependant upon both the nature of the aryl group and the hydrogen bond donating potential of the maleimide ring. Key interactions with the kinase ATP site and hinge region were found to be consistent with homology modeling predictions.
View Article and Find Full Text PDF