Austenitic stainless steels are used widely in many fields due to their good mechanical properties and high resistance to corrosion. This work focuses on the reconstruction of the passive film after scratching. The purpose of the study was to compare changes in the rate of passive layer reconstruction and to discuss the effect of both the type of material and its electrochemical treatment on the reconstruction of the passive layer for two types of stainless steel: 304 and 316.
View Article and Find Full Text PDFIn this work, the removal of NOM (natural organic matter) as represented by humic acid by means of electrospun nanofiber adsorptive membranes (ENAMs) is described. Polyacrylonitrile (PAN) was used for the preparation of ENAMs incorporating silica nanoparticles as adsorbents. The addition of silica to the polymer left visible changes on the structural morphology and fibers' properties of the membrane.
View Article and Find Full Text PDFMaterials (Basel)
August 2021
The technology based on electrospun membranes exhibits great potential in water treatment. This study presents experimental data involving the fabrication of nanofiber membranes with powdered activated carbon (PAC) and its application for the removal of natural organic matter. The fabricated membrane materials were characterized using various techniques.
View Article and Find Full Text PDFMicrofiltration (MF) and ultrafiltration (UF) membranes are capable of rejecting most of particulate and colloidal matter from natural water. The major impediment to their applications is fouling caused by contaminants that accumulate on and/or inside the membrane. Therefore, most membranes are subjected to chemical cleaning procedures as one of the methods to control fouling.
View Article and Find Full Text PDFFouling by natural organic matter (NOM) is a major obstacle when water from natural sources is treated using low-pressure membranes. Prior research by our group has demonstrated that passing natural water through a thin, pre-deposited layer of heated aluminum oxide particles (HAOPs) can remove substantial amounts of NOM from the feed and thereby reduce the fouling rate of downstream membranes. The work reported here explored the technical efficacy of such a pretreatment process under more challenging (and therefore realistic) conditions than reported earlier.
View Article and Find Full Text PDF