We show that dynamic NMR relaxometry allows one to probe the particle size or the concentration evolution over time in homogeneous colloidal suspensions or the concentration in different regions of heterogeneous suspensions, up to large volume fractions. We first demonstrate that the NMR transverse relaxation time is independent of the gel structure at the particle scale so that it only slightly varies during the gelation of a colloidal suspension. The evolution over time of the NMR transverse relaxation time during gel drying and its analysis with the help of the fast-exchange assumption extended to a partially saturated medium then allowed us to identify three successive regimes: homogeneous shrinkage, desaturation, and molecular film regime.
View Article and Find Full Text PDFNatural textiles, hair, paper, wool, or bio-based walls possess the remarkable ability to store humidity from sweat or the environment through "bound water" absorption within nanopores, constituting up to 30% of their dry mass. The knowledge of the induced water transfers is pivotal for advancing industrial processes and sustainable practices in various fields such as wood drying, paper production and use, moisture transfers in clothes or hair, humidity regulation of bio-based construction materials, etc. However, the transport and storage mechanisms of this moisture remain poorly understood, with modeling often relying on an assumption of dominant vapor transport with an unknown diffusion coefficient.
View Article and Find Full Text PDFIn order to characterize the hygroscopic properties of cellulose-based materials, which can absorb large amounts of water from vapor in ambient air, or the adsorption capacity of pollutants or molecules in various porous materials, it is common to rely on sorption-desorption dynamic tests. This consists of observing the mass variation over time when the sample is placed in contact with a fluid containing the elements to be absorbed or adsorbed. Here, we focus on the case of a hygroscopic material in contact with air at a relative humidity (RH) differing from that at which it has been prepared.
View Article and Find Full Text PDFPorous media containing voids which can be filled with gas and/or liquids are ubiquitous in our everyday life: soils, wood, bricks, concrete, sponges, and textiles. It is of major interest to identify how a liquid, pushing another fluid or transporting particles, ions, or nutriments, can penetrate or be extracted from the porous medium. High-resolution X-ray microtomography, neutron imaging, and magnetic resonance imaging are techniques allowing us to obtain, in a nondestructive way, a view of the internal processes in nontransparent porous media.
View Article and Find Full Text PDFVascular plants, a vast group including conifers, flowering plants, etc., are made of a cellular hygroscopic structure containing water in the form of either free (i.e.
View Article and Find Full Text PDF