Newcastle disease virus (NDV) has shown encouraging effectiveness in , , and in early clinical trials as a viro-immunotherapy for pancreatic cancer. Previously, NDV used in clinical trials was produced in embryonated chicken eggs; however, egg-produced viruses are known to be partly neutralized by the human complement system when administered intravenously. Here, an NDV variant (NDV F0) was generated for production in mammalian cells, without passage in eggs.
View Article and Find Full Text PDFDespite decades of research, the prognosis of high-grade pediatric brain tumors (PBTs) remains dismal; however, recent cases of favorable clinical responses were documented in clinical trials using oncolytic viruses (OVs). In the current study, we employed four different species of OVs: adenovirus Delta24-RGD, herpes simplex virus rQNestin34.5v1, reovirus R124, and the non-virulent Newcastle disease virus rNDV-F0-GFP against three entities of PBTs (high-grade gliomas, atypical teratoid/rhabdoid tumors, and ependymomas) to determine their efficacy.
View Article and Find Full Text PDFUnlabelled: Human metapneumovirus (HMPV), a member of the family, causes upper and lower respiratory tract infections in humans. studies with HMPV have mostly been performed in monolayers of undifferentiated epithelial cells. studies in cynomolgus macaques and cotton rats have shown that ciliated epithelial cells are the main target of HMPV infection, but these observations cannot be studied in monolayer systems.
View Article and Find Full Text PDFItaconate derivates, as well as the naturally produced metabolite, have been proposed as antivirals against influenza virus. Here, the mechanism behind the antiviral effects of exogenous 4-octyl itaconate (4-OI), a derivative of itaconate, against the influenza A virus replication is demonstrated. The data indicate that 4-OI targets the cysteine at position 528 of the CRM1 protein, resulting in inhibition of the nuclear export of viral ribonucleoprotein complexes in a similar manner as previously described for other selective inhibitors of nuclear export.
View Article and Find Full Text PDFViral sensing in myeloid cells involves inflammasome activation leading to gasdermin pore formation, cytokine release, and cell death. However, less is known about viral sensing in barrier epithelial cells, which are critical to the innate immune response to RNA viruses. Here, we show that poly(I:C), a mimic of viral dsRNA, is sensed by NLRP1 in human bronchial epithelial cells, leading to inflammasome-dependent gasdermin D (GSDMD) pore formation via caspase-1.
View Article and Find Full Text PDF