Publications by authors named "B M Tolbert"

Article Synopsis
  • Scientists are focused on creating new medicines to fight the virus that causes COVID-19, called SARS-CoV-2.
  • They tested a special treatment called 5'END-2, which is good at stopping the virus from growing in lab cells and mice.
  • The results showed that using 5'END-2 in mice helped reduce the virus in their lungs, suggesting it might be a promising way to treat COVID-19.
View Article and Find Full Text PDF

The functional properties of RNA binding proteins (RBPs) require allosteric regulation through interdomain communication. Despite the importance of allostery to biological regulation, only a few studies have been conducted to describe the biophysical nature by which interdomain communication manifests in RBPs. Here, we show for hnRNP A1 that interdomain communication is vital for the unique stability of its amino-terminal domain, which consists of two RNA recognition motifs (RRMs).

View Article and Find Full Text PDF

Selective pressures on viruses provide opportunities to establish target site specificity and mechanisms of antivirals. Enterovirus (EV)-A71 with resistant mutations in the stem loop (SL) II internal ribosome entry site (IRES) (SLII) were selected at low doses of the antiviral dimethylamiloride (DMA)-135. The EV-A71 mutants were resistant to DMA-135 at concentrations that inhibit replication of wild-type virus.

View Article and Find Full Text PDF

Viruses pose a great threat to people's lives. Enterovirus A71 (EV-A71) infects children and infants all over the world with no FDA-approved treatment to date. Understanding the basic mechanisms of viral processes aids in selecting more efficient drug targets and designing more effective antivirals to thwart this virus.

View Article and Find Full Text PDF

The functional properties of RNA-binding proteins (RBPs) require allosteric regulation through inter-domain communication. Despite the foundational importance of allostery to biological regulation, almost no studies have been conducted to describe the biophysical nature by which inter-domain communication manifests in RBPs. Here, we show through high-pressure studies with hnRNP A1 that inter-domain communication is vital for the unique stability of its N- terminal domain containing a tandem of RNA Recognition Motifs (RRMs).

View Article and Find Full Text PDF