Terbium-doped gadolinium oxysulfide (GdOS:Tb), commonly referred to as Gadox, is a widely used scintillator material due to its exceptional X-ray attenuation efficiency and high light yield. However, Gadox-based scintillators suffer from low X-ray spatial resolution due to their large particle size, which causes significant light scattering. To address this limitation, we report the synthesis of terbium-doped colloidal Gadox nanoplatelets (NPLs) with near-unity photoluminescence quantum yield (PLQY) and high radioluminescence light yield (LY).
View Article and Find Full Text PDFSemiconducting nanoplatelets (NPLs) have attracted great attention due to the superior photophysical properties compared to their quantum dot analogs. Understanding and tuning the optical and electronic properties of NPLs in a plasmonic environment is a new paradigm in the field of optoelectronics. Here, we report on the resonant plasmon enhancement of light emission including Raman scattering and photoluminescence from colloidal CdSe/CdS nanoplatelets deposited on arrays of Au nanodisks fabricated by electron beam lithography.
View Article and Find Full Text PDFTip-enhanced Raman scattering (TERS) has recently emerged as a powerful technique for studying the local properties of low dimensional materials. Being a plasmon driven system, a dramatic enhancement of the TERS sensitivity can be achieved by an appropriate choice of the plasmonic substrate in the so-called gap-mode configuration. Here, we investigate the phonon properties of CdSe nanocrystals (NCs) utilizing gap-mode TERS.
View Article and Find Full Text PDF