The "Everesting" challenge is a cycling activity in which a cyclist repeats a hill until accumulating an elevation gain equal to the elevation of Mount Everest in a single ride. The challenge experienced a surge in interest during the COVID-19 pandemic and the cancelation of cycling races around the world that prompted cyclists to pursue alternative, individual activities. The time to complete the Everesting challenge depends on the fitness and talent of the cyclist, but also on the length and gradient of the hill, among other parameters.
View Article and Find Full Text PDFMore than 300,000 total hip replacement surgeries are performed in the United States each year to treat degenerative joint diseases that cause pain and disability. The statistical survivorship of these implants declines significantly after 15-25 years of use because wear debris causes inflammation, osteolysis, and mechanical instability of the implant. This limited longevity has unacceptable consequences, such as revision surgery to replace a worn implant, or surgery postponement, which leaves the patient in pain.
View Article and Find Full Text PDFPolyethylene wear debris limits the longevity of prosthetic hip implants. We design a pattern of axisymmetric texture features to increase hydrodynamic pressure and lubricant film thickness and, thus, reduce solid-on-solid contact, friction, and wear in hard-on-soft prosthetic hip implant bearings. Specifically, we study the effect of the texture floor profile on the lubricant film thickness using a soft elastohydrodynamic lubrication model.
View Article and Find Full Text PDFWe design a pattern of microtexture features to increase hydrodynamic pressure and lubricant film thickness in a hard-on-soft bearing. We use a soft elastohydrodynamic lubrication model to evaluate the effect of microtexture design parameters and bearing operating conditions on the resulting lubricant film thickness and find that the maximum lubricant film thickness occurs with a texture density between 10% and 40% and texture aspect ratio between 1% and 14%, depending on the bearing load and operating conditions. We show that these results are similar to those of hydrodynamic textured bearing problems because the lubricant film thickness is almost independent of the stiffness of the bearing surfaces in full-film lubrication.
View Article and Find Full Text PDFWe theoretically show that a superposition of plane waves causes small (compared to the wavelength) particles dispersed in a fluid to assemble in quasiperiodic two or three-dimensional patterns. We experimentally demonstrate this theory by using ultrasound waves to assemble quasiperiodic patterns of carbon nanoparticles in water using an octagonal arrangement of ultrasound transducers, and we document good agreement between theory and experiments. The theory also applies to obtaining quasiperiodic patterns in other situations where particles move with linear waves, such as optical lattices.
View Article and Find Full Text PDF