Background And Hypothesis: Impaired speech-gesture matching has repeatedly been shown in patients with schizophrenia spectrum disorders. Here, we tested the hypothesis that schizotypal traits in the general population are related to reduced speech-gesture matching performance and reduced self-reports about gesture perception. We further explored the relationships between facets of schizotypy and gesture processing in a network model.
View Article and Find Full Text PDFSensory consequences of one's own action are often perceived as less intense, and lead to reduced neural responses, compared to externally generated stimuli. Presumably, such sensory attenuation is due to predictive mechanisms based on the motor command (efference copy). However, sensory attenuation has also been observed outside the context of voluntary action, namely when stimuli are temporally predictable.
View Article and Find Full Text PDFIt has been widely assumed that internal forward models use efference copies to create predictions about the sensory consequences of our own actions. While these predictions have frequently been associated with a reduced blood oxygen level dependent (BOLD) response in sensory cortices, the timing and duration of the hemodynamic response for the processing of video feedback of self-generated (active) versus externally generated (passive) movements is poorly understood. In the present study, we tested the hypothesis that predictive mechanisms for self-generated actions lead to early and shorter neural processing compared with externally generated movements.
View Article and Find Full Text PDFPredictions shape our perception. The theory of predictive processing poses that our brains make sense of incoming sensory input by generating predictions, which are sent back from higher to lower levels of the processing hierarchy. These predictions are based on our internal model of the world and enable inferences about the hidden causes of the sensory input data.
View Article and Find Full Text PDFAdaptation to delays between actions and sensory feedback is important for efficiently interacting with our environment. Adaptation may rely on predictions of action-feedback pairing (motor-sensory component), or predictions of tactile-proprioceptive sensation from the action and sensory feedback of the action (inter-sensory component). Reliability of temporal information might differ across sensory feedback modalities (e.
View Article and Find Full Text PDF