Voltage-gated potassium (K) channels are important regulators of cellular excitability and control action potential repolarization in the heart and brain. K channel mutations lead to disordered cellular excitability. Loss-of-function mutations, for example, result in membrane hyperexcitability, a characteristic of epilepsy and cardiac arrhythmias.
View Article and Find Full Text PDFVoltage-gated potassium (K ) channels are important regulators of cellular excitability and control action potential repolarization in the heart and brain. K channel mutations lead to disordered cellular excitability. Loss-of-function mutations, for example, result in membrane hyperexcitability, a characteristic of epilepsy and cardiac arrhythmias.
View Article and Find Full Text PDFDeficiency in peroxisome proliferator-activated receptor gamma coactivator 1-alpha. (PGC-1α) expression or function is implicated in numerous neurological and psychiatric disorders. PGC-1α is required for the expression of genes involved in synchronous neurotransmitter release, axonal integrity, and metabolism, especially in parvalbumin-positive interneurons.
View Article and Find Full Text PDF