Purpose: Long-term treatment-related toxicities, such as neurologic and metabolic toxicities, are major issues in breast cancer. We investigated the interest of metabolomic profiling to predict toxicities.
Experimental Design: Untargeted high-resolution metabolomic profiles of 992 patients with estrogen receptor (ER)+/HER2- breast cancer from the prospective CANTO cohort were acquired (n = 1935 metabolites).
Open mass spectral libraries (OMSLs) are critical for metabolite annotation and machine learning, especially given the rising volume of untargeted metabolomic studies and the development of annotation pipelines. Despite their importance, the practical application of OMSLs is hampered by the lack of standardized file formats, metadata fields, and supporting ontology. Current libraries, often restricted to specific topics or matrices, such as natural products, lipids, or the human metabolome, may limit the discovery potential of untargeted studies.
View Article and Find Full Text PDFIntroduction: Accuracy of feature annotation and metabolite identification in biological samples is a key element in metabolomics research. However, the annotation process is often hampered by the lack of spectral reference data in experimental conditions, as well as logistical difficulties in the spectral data management and exchange of annotations between laboratories.
Objectives: To design an open-source infrastructure allowing hosting both nuclear magnetic resonance (NMR) and mass spectra (MS), with an ergonomic Web interface and Web services to support metabolite annotation and laboratory data management.
Background: Metabolic syndrome (MetS), a cluster of factors associated with risks of developing cardiovascular diseases, is a public health concern because of its growing prevalence. Considering the combination of concomitant components, their development and severity, MetS phenotypes are largely heterogeneous, inducing disparity in diagnosis.
Methods: A case/control study was designed within the NuAge longitudinal cohort on aging.
Nosema ceranae is an emerging and invasive gut pathogen in Apis mellifera and is considered as a factor contributing to the decline of honeybee populations. Here, we used a combined LC-MS and NMR approach to reveal the metabolomics changes in the hemolymph of honeybees infected by this obligate intracellular parasite. For metabolic profiling, hemolymph samples were collected from both uninfected and N.
View Article and Find Full Text PDF