Publications by authors named "B Luster"

Persons suffering from opioid use disorder (OUD) experience long-lasting dysphoric symptoms well into extended periods of withdrawal. This protracted withdrawal syndrome is notably characterized by heightened anxiety and hyperkatifeia. Here, we investigated if an exacerbated withdrawal model of acute morphine dependence results in lasting behavioral adaptation 6 weeks into forced abstinence in C57BL/6J mice.

View Article and Find Full Text PDF

The United States is experiencing an opioid crisis imposing enormous fiscal and societal costs and driving the staggering overdose death rate. While prescription opioid analgesics are essential for treating acute pain, cessation of use in individuals with a physical dependence induces an aversive withdrawal syndrome that promotes continued drug use to alleviate/avoid these symptoms. Additionally, repeated bouts of withdrawal often lead to an increased propensity for relapse.

View Article and Find Full Text PDF

This review highlights the most important discovery in the reticular activating system (RAS) in the last 10 years, the manifestation of gamma (γ) band activity in cells of the RAS, especially in the pedunculopontine nucleus (PPN), which is in charge of the high frequency states of waking and rapid eye movement sleep. This discovery is critical to understanding the modulation of movement by the RAS and how it sets the background over which we generate voluntary and triggered movements. The presence of γ band activity in the RAS is proposed to participate in the process of preconscious awareness, and provide the essential stream of information for the formulation of many of our actions.

View Article and Find Full Text PDF

Synaptic efferents from the PPN are known to modulate the neuronal activity of several intralaminar thalamic regions (e.g., the centrolateral/parafascicular; Cl/Pf nucleus).

View Article and Find Full Text PDF

A 10 Hz rhythm is present in the occipital cortex when the eyes are closed (alpha waves), in the precentral cortex at rest ( rhythm), in the superior and middle temporal lobe ( rhythm), in the inferior olive (projection to cerebellar cortex), and in physiological tremor (underlying all voluntary movement). These are all considered resting rhythms in the waking brain which are "replaced" by higher frequency activity with sensorimotor stimulation. That is, the 10 Hz frequency fulcrum is replaced on the one hand by lower frequencies during sleep, or on the other hand by higher frequencies during volition and cognition.

View Article and Find Full Text PDF